Handout: Channel Flow - Mean Velocity Profiles

Similarity

$$\langle U \rangle = f(\rho, v, \delta, y, \frac{dp_w}{dx}) = f(\rho, v, \delta, y, u_\tau)$$

 $\Rightarrow 6-3=3$ non-dimensional groups

$$\frac{\langle U \rangle}{u_{\tau}} = f(\frac{y}{\delta}, \frac{\delta}{\delta_{\nu}}) = f\left(\frac{y}{\delta}, \operatorname{Re}_{\tau}\right)$$

One can do the same analysis for the Velocity Gradient:

$$\frac{d\langle U\rangle}{dy} = \frac{u_{\tau}}{y} \Phi(\frac{y}{\delta}, \frac{y}{\delta_{v}})$$

 δ_v is the appropriate length scale in the viscous wall region, while δ is the appropriate length scale in the outer layer

The law of the wall

Prandtl (1925): In the inner layer ($\frac{y}{\delta} \ll 1$) and at high Reynolds numbers $\ll U$ is determined only by the viscous scales

$$\Rightarrow \frac{d\langle U \rangle}{dy} = \frac{u_{\tau}}{y} \Phi_I(\frac{y}{\delta_v}) \quad \text{for } \frac{y}{\delta} <<1$$
(1)

with

$$u^+ = \frac{\langle U \rangle}{u_\tau}$$
 and $y^+ = \frac{y}{\delta_v}$

$$\Rightarrow \frac{du^+}{dy^+} = \frac{1}{y^+} \Phi_I(y^+) \tag{2}$$

The integral of the previous equation is the **Law of the Wall** valid in viscous sublayer and the inner layer (y/d<0.1)

$$u^+ = f_w(y^+) \tag{3}$$

where

$$f_w(y^+) = \int_0^{y^+} \frac{1}{y^{+'}} \Phi_I(y^{+'}) dy^{+'}$$

Viscous Sublayer

From equation (3)

$$f_{w} = u^{+} = \frac{\langle U \rangle}{u_{\tau}}$$
$$\Rightarrow f_{w}(0) = 0$$
$$f_{w}^{'}(0) = \frac{du^{+}}{dy^{+}}\Big|_{y=0}$$
$$= \frac{\delta_{v}}{u_{\tau}} \frac{\partial \langle U \rangle}{\partial y}\Big|_{y=0}$$
$$= \frac{v}{u_{\tau}^{2}} \frac{\tau_{w}}{\rho v}$$
$$= \frac{\rho}{\tau_{w}} \frac{\tau_{w}}{\rho} = 1$$

Hence, the Taylor series expansion for small y

$$u^{+} = f_{w}(y^{+}) = f_{w}(0) + f_{w}'(0)y^{+} + O(y^{+2})$$
$$\Rightarrow u^{+} = y^{+}$$

Fig. 7.5. Near-wall profiles of mean velocity from the DNS data of Kim *et al.* (1987): dashed line, Re = 5,600; solid line, Re = 13,750; dot-dashed line, $u^+ = y^+$.

The Log Law

At large Reynolds numbers, the outer part of the inner layer corresponds to large y⁺ where viscosity has little effect (Φ independent of $\frac{y}{\delta_v}$)

$$\Phi = \Phi(\frac{y}{\delta_{v}}, \frac{y}{\delta})$$
$$y^{+} \gg 1 \Longrightarrow \frac{y}{\delta_{v}} = \frac{y}{\delta} \frac{\delta}{\delta_{v}} \gg 1$$
$$\Longrightarrow \frac{y}{\delta} \gg \frac{\delta_{v}}{\delta} = \frac{v}{u_{\tau}\delta} = \operatorname{Re}_{\tau}^{-1}$$

Also Φ independent of $\frac{y}{\delta}$ for

$$\frac{y}{\delta} << 1 \quad let's \ say \quad \frac{y}{\delta} < 0.1$$
$$\Rightarrow \frac{y}{\delta_{\nu}} \frac{\delta_{\nu}}{\delta} < 0.1$$
$$\Rightarrow y^{+} < 0.1 \frac{\delta}{\delta_{\nu}} = 0.1 \frac{\delta u_{\tau}}{\nu} = 0.1 \operatorname{Re}_{\tau}$$

where the edge of the inner layer was defined at 0.1δ .

So if
$$\operatorname{Re}_{\tau}$$
 is such that $\frac{y}{\delta} >> \operatorname{Re}_{\tau}^{-1}$ and $y^{+} = y/\delta_{v} < 0.1 \operatorname{Re}_{\tau}$

 $\Phi_I(y^+)$ independent of both $\frac{y}{\delta_v}$ (viscosity) and of $\frac{y}{\delta}$, thus from equation (2):

$$\Rightarrow \Phi_I = const = \frac{1}{\kappa}$$
$$\Rightarrow \frac{du^+}{dy^+} = \frac{1}{\kappa y^+}$$
$$\Rightarrow u^+ = \frac{1}{\kappa} \ln y^+ + B$$

with

Fig. 7.7. Mean velocity profiles in fully developed turbulent channel flow measured by Wei and Willmarth (1989): \bigcirc , Re₀ = 2,970; \Box , Re₀ = 14,914; \triangle , Re₀ = 22,776; ∇ , Re₀ = 39,582; line, the log law, Eqs. (7.43)-(7.44).

Fig. 7.8. A sketch showing the various wall regions and layers defined in terms of $y^+ = y/\delta_v$ and y/δ , for turbulent channel flow at high Reynolds number (Re_r = 10⁴).

Fig. 7.13. Regions and layers in turbulent channel flow as functions of the Reynolds number.

Velocity Defect Law

In the outer layer $(y^+ > 50)$ the assumption that Φ is independent of v implies that, for large $\frac{y}{\delta_v}$, Φ tends asymptotically to a function of y/ δ only:

$$\frac{d\langle U\rangle}{dy} = \frac{u_{\tau}}{y} \Phi_o(\frac{y}{\delta})$$
(4)

By integrating in y from y to δ (channel centerline)

$$\int_{y}^{\delta} \frac{d\langle U \rangle}{dy'} dy' = \int_{y}^{\delta} \frac{u_{\tau}}{y'} \Phi o(\frac{y'}{\delta}) dy'$$
$$\frac{U_o - \langle U \rangle}{u_{\tau}} = F_D(\frac{y}{\delta}) \quad \text{with} \qquad F_D(\frac{y}{\delta}) = \int_{y/\delta}^{1} \frac{1}{y'} \Phi o(y') dy' \quad (5)$$

Unlike the law of the wall function $f_w(y^+)$ which is universal, the function $F_D(\frac{y}{\delta})$ is different in different flows.

At sufficiently high Reynolds numbers (approximately Re>20,000) there is an overlap region between the inner layer and the outer layer (see Figs. 7.8 and 7.13). In this region both equations (1) and (4) are valid

$$\frac{y}{u_{\tau}} \frac{d\langle U \rangle}{dy} = \Phi_I \left(\frac{y}{\delta_v} \right) = \Phi_0 \left(\frac{y}{\delta} \right) \text{ for } \delta_v \ll y \ll \delta$$

This can be satisfied only if the two functions on the right hand side are equal to the same constant $(1/\kappa)$, which leads to

$$\Rightarrow \frac{d\langle U \rangle}{dy} = \frac{u_{\tau}}{y\kappa} \text{ for } \delta_{v} \ll y \ll \delta$$

For small y/δ , the velocity defect law (equation 5) can be written as:

$$\frac{U_0 - \langle U \rangle}{u_\tau} = F_D\left(\frac{y}{\delta}\right) = -\frac{1}{\kappa} \ln \frac{y}{\delta} + B_1 \tag{6}$$

The value of the flow-dependent constant B_1 is ~0.2 based on DNS and ~0.7 based on experimental data for channel flows.

Statistics in turbulent channel flows:

· · ·	Location		
• •	Peak production $y^+ = 11.8$	$\begin{array}{l} \text{Log law} \\ y^+ = 98 \end{array}$	Centerline $y^+ = 395$
$\langle u^2 \rangle / k$	1.70	1.02	0.84
$\langle v^2 \rangle / k$	0.04	0.39	0.57
$\langle w^2 \rangle / k$	0.26	0.59	0.59
$\langle uv \rangle /k$	-0.116	-0.285	0
ρ_{uv}	-0.44	-0.45	0
Sk/e	15.6	3.2	0
\mathcal{P}/ε	1.81	0.91	0

Table 7.2. Statistics in turbulent channel flow, obtained from the DNS data of Kim et al. (1987), Re = 13,750

Fig. 7.14. Reynolds stresses and kinetic energy normalized by the friction velocity against y^+ from DNS of channel flow at Re = 13,750 (Kim *et al.* 1987).

Fig. 7.15. Profiles of Reynolds stresses normalized by the turbulent kinetic energy from DNS of channel flow at Re = 13,750 (Kim *et al.* 1987).

Fig. 7.16. Profiles of the ratio of production to dissipation $(\mathcal{P}/\varepsilon)$, normalized mean shear rate (Sk/ε) , and shear stress correlation coefficient (ρ_{wv}) from DNS of channel flow at Re = 13,750 (Kim *et al.* 1987).

Fig. 7.18. The turbulent-kinetic-energy budget in the viscous wall region of channel flow: terms in Eq. (7.64) normalized by viscous scales. From the DNS data of Kim *et al.* (1987). Re = 13,750.