
058:268 Turbulent Flows 

Handout: Boundary Layers 
 
 
Differences to Turbulent Channel Flow 
 

• Boundary layer develops in the flow direction, )(xδδ =  
• wτ  not known a priori 
• Outer part of the flow consists of intermittent turbulent/non-turbulent 

motion 
But behavior of the flow in the inner layer  )1.0)(( <x

y
δ is very similar to channel flow 

In the defect layer )1.0)(( >x
y
δ , the departures from the log law are more significant 

 
Definition 
 

 
 

Fig. 1  Sketch of a flat-plate boundary layer  
 
Assumptions:  
 
- Statistics independent of z: <W>=0 
- As the boundary layer continuously develops in the x direction, statistics depend on 
both x and y. 
- U0=U0(x) 
 
Bernoulli equation for free stream:  
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Thus, accelerating flow corresponds to a negative or ‘favorable’ pressure gradient. 



Decelerating flow yields a positive or ‘adverse’ pressure gradient 
 
Boundary layer thickness )(xδ  defined as the y value at which 
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This quantity depends on small velocity differences.  More reliable ways to characterize 
the thickness of boundary layer are: 
 
Displacement thickness 
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Momentum thickness 
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Relevant Reynolds numbers: 
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Critical Reynolds number for zero-pressure gradient boundary layer: 

 
Flow is laminar from x=0 to a location x (which defines the start of transition) which 
corresponds to 
 

6
, 10Re ≈critx  

 
but this value is also dependent on level of disturbances in the free stream. 
 
The boundary layer typically becomes fully turbulent over some distance (~30% of the 
distance from the leading edge to the start of transition) 
 
Mean Momentum Equations 
 
- Flow develops in the x direction 
- Axial stress gradients are small compared to cross-stream gradients 
 
The lateral momentum equation reduces to: 
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Integrate (2) from the wall (y=0) to freestream where the velocity fluctuations are equal 
to zero: 
 

)()(0 xpxp w=   (=wall pressure) 
 
Integrate (2) from 0 to y 
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The Mean Axial Momentum Equation is: 
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and using (1) 
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where the shear stress is defined as: 
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and 
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was neglected as were all the other contributions from streamwise gradients of 

Reynolds stresses (boundary layer approximation) in the original form of the axial 
momentum equation. 
 
In contrast to channel flow, convective terms are non-zero and cannot be determined 
easily! 
 
At the wall (y=0) use (3) and the fact that the convective terms are zero, to obtain  
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If the freestream pressure gradient is zero and using the definition of the shear stress (4) 
and the fact that <uv> increases from zero at the wall proportional to y3: 
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which shows that the mean streamwise velocity profile varies linearly with y near y=0. 
 
 
Integration of momentum equation leads to von Karman integral momentum 
equation 
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 so U0 is not a function of x) 

Use continuity equation and rewrite (3) for zero pressure gradient as: 
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Integrate from 0 to ∞  with y: 
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Add/substract dy
x
UU
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0  and integrate second and last terms (in the free stream <V>=0 

and the shear stress τ=0) 
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Recall definition of θ 
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Mean Velocity Profiles 

 
Fig. 2  Mean velocity profiles in wall units (experiments and simulations) 
 
 
 ⇒Law of the wall still holds in the log-law region, buffer layer and the viscous sublayer 
(u+=y+). 
 
Question:  What form does the law of the wall take in the buffer layer (5<y+<30-50)? 
 
Van Driest Damping function for buffer layer 
 

Mixing length hypothesis:      -
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So from (4): 
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To integrate (5) all what we have to do is to specify )( +++ = yll mm  
 
 
But we know that in the Log Layer:    lm=ky   
 

⇒  ++ = ylm κ                                              (6) 
which can be used to determine u+ in the log-layer. 
 
 
 

If same specification of the mixing length would be used in the viscous sub-layer: 
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⇒  incorrect +y  (or y) dependence (should be 
3+y ): 

 
So the specification lm=ky  should be reduced, or damped, near the wall. 

 
⇒  Van Driest damping function assures proper transition to viscous sublayer 
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This is a purely empirical formula, but it works reasonably well and it is used in many 
wall models, especially in LES.  For large y+, the damping function tends to unity and the 
log law is recovered. 
 



Equation (7) can be used to integrate equation (5) over both the viscous sublayer and the 
log layer to determine u+ and thus the mean velocity profile <U>.  
 
 
 
 
 
 
 
 
 
Velocity Defect Law 
 
In the defect layer (y/δ>0.2, say) the mean velocity deviates from the log law as can be 
seen from Fig. 3.   
 

 
 
Fig. 3  Mean velocity profile in a turbulent boundary layer 
 
 
 
From an extensive examination of boundary-layer data, Coles (1956) showed that the 
mean velocity profile over the whole boundary layer is well predicted by the sum of two 
functions: 
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The wake function )/( δyw is assumed to be universal (same for all boundary layers), and 
is defined to satisfy the normalization conditions 
 

w(0)=1  and  w(1)=2 
 
The wake strength parameter  Π  is flow dependent 
A convenient approximation for )/( δyw is: 
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Approximate fw by the log law 
 

)()ln(1
δκδκ ντ

ywBy
u
U ∏

++=                          (8) 

 
 
 
For δ=y  
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⇒  For given Reδ this equation can be solved for 0/Uuτ   
⇒  Skin friction coefficient is 
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Velocity defect law (subtract (8) from (9)) 
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Eddy Viscosity in Defect Layer 
 

Eddy viscosity definition                           
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Eddy viscosity model (mixing length) 
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Defect layer: the shear stress τ(y) is less than τw and the velocity gradient 
y
U
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∂
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than the value )/( yu κτ given by the log law. 
 
This means that the value of tν is less than the one given by the log-law formula 

yut κν τ= and, consequently, the mixing length ml is smaller than yκ in the defect later. 
This is confirmed by results from DNS in Fig. 4 
 

 
 
Fig. 4  Turbulent viscosity and mixing length variation in a turbulent boundary layer.  
 
 
Thus ml  has to be adjusted.  One simple way to do that is 
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