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PROJECT:   
 
Get a copy of the following papers: 
[1] Kim, Moin and Moser JFM 1987 177, pp133-166 
[2] Moin and Kim, JFM 1982, 118, pp 341-377 
[3] IIHR report no. 413 by Cui, Patel and Lin  
 
Raw data corresponding to two computations of the fully developed channel flow at Reτ= 
uτ h/ν=180 (2h=distance between channel walls in the y direction) are available on the 
class web site.  The DNS computation was run on a 128*64*128 grid in (x,y,z) while the 
LES was run on a 32*64*32 grid.  Ten sets of data containing u,v,w and p spaced 1.0h/uτ 
are available.  The time step in the simulations was 0.001h/uτ.  The size of the domain in 
the streamwise direction is 4πh and in the spanwise direction is 4/3πh.  The 
nondimensionalization in the numerical simulations is such that h=1 and the mean 
friction velocity uτ=1, so Re=1/ν.  The points are uniformly distributed in x and z 
directions while in the y direction the grid is finer near the walls.  The stretching function 
constant was 1.9 so that y+~1.0 at the first point off the wall in both DNS and LES (see 
formula 4.1 in [2]).   
 
The data files were written using the following format that can be used to read it: 
 
      open(32,file=sname) 
 write(32,*) 'TITLE = "JET SOLN"' 
 write(32,*) 'VARIABLES = X,Y,Z,UC,VC,WC,P' 
 write(32,*) 'ZONE T="zone1", I=',N1+1, ' , J=',N2+1,',  
     &  K=',N3+1,' , F=POINT'  
          do k=0,N3 
          do j=0,N2 
          do i=0,N1 
         Xc=i*HX 
         Yc=Y2(j) 
         Zc=k*HZ 
         WRITE(32,*)Xc,Yc,Zc,Ucc(i,j,k),Vc(i,j,k),Wcc(i,j,k),Pc(i,j,k) 
          end do 
          end do 
          end do 
        close(32) 
 
The ratio of the test filter to the grid filter was 2.  Test filtering was applied only in 
homogeneous directions so in Germano’s formula ( ∆̂ /∆)2=4 was used.  The test filter was 
a discrete approximation of the top-hat filter obtained using Simpson’s rule.  The width 
of the filter is 2∆.  In one dimension the filter is: 
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The mean distribution of the dynamic coefficient C∆2 and eddy viscosity νt in the LES 
simulation can be obtained from the following file that is also provided 
 
      OPEN(44,file='C_NIU_MEAN.dat') 
      DO 340 J=0,N2+1 
        YP=RE*( 1.D0-ABS(Y(J)) ) 
        WRITE(44,*) 'YP  Cdelta2   NIUT   J  Y ' 
        WRITE(44,4100) YP,CONSTM(J),VTM(J),J,Y(J) 
   340 CONTINUE 
       CLOSE(44) 
 
 
TASK1:  Data exploration 
 
Calculate ∆x, ∆z, min(∆y), max(∆y) from the files for both LES and DNS.  What are 
their values in wall units?  Using same levels for the contours and same range for the 
variables plot the instantaneous resolved u and v fields using contours using 
approximately 40 contours.  Are there overall any differences between the LES and DNS 
fields? 
 
TASK2:  Statistics 
 
Calculate statistics for DNS and LES using the whole data set provided (use all frames).  
Average in time and over the 2 homogeneous directions.  Thus, all statistics can be 
presented in a plot S=S(y).  Plot the distributions of the mean velocity component U and 
mean components of the Reynolds stresses (only resolved part for LES).  Plot U/Uc vs. y 
and then U+ vs. y+.  Also plot U+=y+ for y+<10 and U+=2.5 log y++5.5 (Uc is the 
centerline velocity).  Calculate Uc as well as the average channel velocity, Um, and then 
the Reynolds numbers defined with Uc and Um and the ratio between these velocities and 
the friction velocity uτ.  Calculate the mean stress at the wall τw and then the friction 
coefficient Cf.  What is the effective Reynolds number of the calculation? How does the 
DNS and LES values compare to Table 1 in [1]?  How does Cf and Uc/Um compare to 
the values calculated using Dean’s correlation (page 142 in [1])?  Is the direct comparison 
between DNS and LES a fair one?   
 
TASK3:  Visualization of vortical structures 
 
Read sections 3.7 to 3.10 from [3].  
 
Plot the u contours in a x-z plane situated at ~ y+=6 from one of the walls.  You are going 
to observe some streaky structures of low/high streamwise velocity.  Estimate the average 
width and length of these structures in both LES and DNS (use wall units). 
 
Visualize the low-speed streaks in 3D using contours of the instantaneous fluctuation of 
the streamwise velocity (probably u’/Um=-0.2 is a good value, but you can play with that 
value; u’=U(x,y,z)- )(yU ) for both DNS and LES (use only one data set for each).  Write 
a code to visualize the vertical structures of an instantaneous flow field using the λ2 



method of Jeong and Hussain (1995, JFM 285, page 66-94).  A short description of the 
method is given in section 3.10.1. in [3].  Produce a figure showing the vertical structures 
from different angles similar to fig. 3.18 in [3]. 
 
Now let’s focus on the flow structures in a (y,z) plane.  Try to see how the vortices that 
are present in the resolved velocity field (as shown by the instantaneous velocity 
fluctuations v’,w’) correlate with contours of pressure minima, contours of the 
instantaneous resolved vorticity magnitude and, finally, contours of the vorticity 
structures as shown by the λ2 method (similar to Fig 3.17 in [3]).  What is the mean 
inclination angle of the structures relative to the streamwise direction in an (x,z) plane?  
What is their average penetration height in the channel?  Comment on the results.  
Information about the average streak spacing can be obtained from the 2 point 
correlations Ruu(y,r1) and Ruu(y,r3).   
 

Ruu(y,r1)=
><

>+<

),,('
),,1('),,('

2 zyxu
zyrxuzyxu       (2) 

Ruu(y,r3)=
><

>+<

),,('
)3,,('),,('

2 zyxu
rzyxuzyxu       (3) 

 
Using only one data set (frame) calculate these correlations for both LES and DNS data 
at a location corresponding approximately to y+=10 for 0<r1+, r3+<500.  Make sure when 
performing the summation over the homogeneous directions you include all terms, for 
points situated close to one of the lateral boundaries in x or z directions you will have to 
use the periodicity of the data to get the value, let’s say at x+r1.  Distance between the 
origin and the point where the Ruu(y,r3) correlation reaches a minimum represents the 
‘statistical mean’ distance between low-speed and high-speed streaks.  Twice that 
distance represents the average spacing between streaks.  How does that distance for LES 
and DNS compare with the experimental measured value which is close to 100 wall 
units? 
 
TASK4:  Analysis of the primary shear stress 
 
Plot the r.m.s. distribution of the velocity components (normalized by uτ) vs y+ (up to 100 
wall units) and vs. y/h (across the channel).  Do not forget to subtract the local mean from 
the u(x,y,z) values (the mean of v and w should be zero). 
What are the maximum values for the 3 components and at what y+ are they observed?  
Memorize those values. 
   
Show that for a fully developed channel flow (DNS): 
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       where ντ /huh =+      (4) 

OBS:  You should define the origin and direction of y axis such that both terms in the left 
hand side should be positive.   



 
TURB     VISC      LINEAR VARIATION 
 
In the following use the above nondimensionalization for the stresses. 
 
Plot the distribution of the (mean) viscous shear stress,  the turbulent shear stress and the 
total stress for DNS in both wall and global coordinates (see also fig 10 in [1] and fig 3.5 
in [3] ).  Check if indeed the total stress varies linearly across the channel. 
Repeat the same exercise for LES.  Here you will have one extra term, the sub-grid term.  
You can use the values of νt from file 'C_NIU_MEAN.dat' to estimate the subgrid term.  
Comment on the results.   
 
 
TASK5: Additional statistics for DNS 
 
For DNS data only: 
Calculate the skewness and the flatness coefficients for the velocity fluctuations in all 
three directions: 
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where <> denoted averages over time and homogeneous directions. 
 
Plot Si, Fi vs. y/h.  Calculate and plot the correlation coefficient <u’v’>/urmsvrms.  
Compare with experimental data from fig 11 in [1].  Create a plot similar to fig 12 in [1].   
This will allow you to check the behavior of the Reynolds stresses near the wall (y+<10) 
compared to the asymptotic solutions.   
 
Calculate the mean vorticity distribution ωz as well as the r.m.s. distribution of the 
resolved vorticity for all 3 components.  If you normalize them by the mean shear at the 
wall ( 2/ τνω uz ) you should get a plot similar to fig 14 in [1].   
 
 
TASK6:  Turbulence kinetic energy budget for LES and DNS 
 
k= iiuu /2 where – denotes the resolved quantities, and     
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uns+  adv = prod   +press_diff+subgrid_diff+visc_diff+resolved_diss+SGS_diss 
 



jijiij uuuu −=τ          (7) 
 
Flow is steady so <uns>=0.  However, the mean (<>) of all the other terms is not zero. 
Calculate the mean of all the terms independently and check the energy balance for both 
LES and DNS (for DNS the subgrid diffusion and subgrid dissipation terms are absent as 
all the stresses are resolved on the grid).  For LES you’ll have to reconstruct the 
unresolved stresses using the dynamic Smagorinsky model for which you know the 
distribution of C∆2.    Use  
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Produce a plot similar to fig 3.8 in [3] (observation: The form of the resolved t.k.e. 
equation is changed compared to [3]). 
 
OBS: You have the option to define k with the fluctuating component only –this is in fact 
the more popular definition- (for channel flow this will affect only the i=1 component), in 
which case you should use the modified form of (6), (8) and (9) consistent with this 
definition (see equations 6.1 to 6.3 and figure 17 in Moin and Kim). 
 
TASK7:  Quadrant analysis 
 
For one of the 3D flow fields in LES and DNS perform a quadrant analysis similar to 
section 4.6 in [1] and 3.7 in [3].  In particular, plot the event frequency (sweep, ejection, 
outward interaction and inward interaction) vs. y/h (do not forget to subtract the mean 
U(y) from the instantaneous velocity component u).  Then plot the fractional contribution 
of the four stresses normalized first by 2

τu and then by the local Reynolds shear stress (in 
this case the sum at all locations should be equal to 1) similar to fig 16 in [1] and figs 
3.10 and 3.11 in [3].    
 
TASK8:  Filters 
 
Define a filter of a function f(x) as: 
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The normalization condition for the filter is  
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For the following filters show that the normalization condition is satisfied and calculate 
the filter function in wave space )(ˆ kG using Fourier transform )(ˆ kG =F(G(x,∆)).  Plot the 
filter functions in physical space (one figure, for |x|<3.0) and in wave space (one figure, 
for |k|<30).  Comment the results especially for the Fourier (sharp) cut-off filter. 
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If we consider one mode of a velocity field, u=exp(ikx) and evaluate the one-dimensional 

sub-filter stress (SFS) as 22 uu −=τ  show that  
 

1) the filtered velocity takes the form   
 

       =u H(k∆)exp(ikx)         (15) 
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2) Up to a truncation of O(∆6), the series expansion used to represent the unfiltered 

velocity field becomes  
 
    )exp()()(* ikxkHkAu ∆∆=        (18) 
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Hint: See also the discussion in task 9 which will allow you to prove the above 
expression for AT and AG. 
In other words, u* should be an O(∆6) approximation for u=exp(ikx).  Plot the 
amplitude )()( ∆∆ kHkA  vs. k∆ for the two filters with different truncation errors (2, 4 
and 6) of the expansion in A(k∆).  The order of accuracy is evidently 0, 2 and 4, 
respectively.  The range of interest corresponds to wavenumbers k, such that k∆<π 
(resolved range of wavenumbers on a grid of size ∆), but you can plot the functions 
up to k∆<10.  Comment on the accuracy of the different filters with respect to the 
approximation to the full velocity u (that corresponds to )()( ∆∆ kHkA =1).   
 
3) Show that the exact form of the SFS stress 22 uu −=τ  for u=exp(ikx) is 
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Obs:  For relation (22) assume u=sin(kx) and prove: 
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Consider (22) just a generalization of (22a) which you do not have to prove. 
Remember that (17) applies for u=exp(ikx), so in particular for both the real and 
imaginary parts meaning that  =)cos(kx H(k∆)cos(kx) and =)sin(kx H(k∆)sin(kx). 

4) Now consider two approximate forms to 22 uu −=τ  using u* instead of u: 
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Show that: 
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 Plot the amplitude of the oscillating part (the coefficient in front of the exp function) of 
2121 ,,, TTGG ττττ  vs. k∆ along with the amplitude of the oscillating part of the exact τ for 

the second-order (you retain only the first 2 terms in the expression for A) and the fourth-
order model (retain all three terms).   
 
TASK9:  Estimation (reconstruction) of the unfiltered quantities from the filtered ones 
 
Consider the multi-dimensional series expansion for any scalar variable (velocity 
component, pressure, etc.) at a point xj=(x,y,z): 
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where index notation (summation is implied for indices present in the same term) was 
used for compactness.  Next, apply an anisotropic Gaussian filter: 
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with G defined as 
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Show that: 
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Use the previous expression recursively to estimate )( ii ufu = .  Prove that: 
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At this point if u denotes the velocity, you partially reconstructed the total velocity from 
the filtered (resolved) value that is calculated in LES.  So, you can then estimate, for 
instance, the turbulent stress jiuu which in fact is what you need to do in order to close 
the filtered Navier-Stokes equations.  So basically you built a subfilter scale model using 
reconstruction (or defiltering) techniques.    Essentially you estimated the inverse of the 
filter that is applied initially on the Navier-Stokes equations. 
 
If the filter is isotropic then  
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TASK10:  Sub-filter scale models 
 
Using the expression obtained in previous task, derive several models 
for jijiij uuuu −=τ .  Neglect the fourth and higher order terms in the expansion for ui.  

Expand only the unclosed term jiuu and obtain the following model 
 
Model 1 
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Expand also the explicit term jiuu to obtain  
 
Model 2 
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Observation: To second order in filter width Model 2 reduces to one of the most popular 
LES models: the Bardina scale-similarity model  (Model 3) 
 
Model 3 
 

kikiik uuuu −=τ          (37) 
 



Model 4 (Modified Clark model) 
 
Start with the expression for Model 1 and use the fact that up to second order accuracy in 

the last expression of previous task ii uu 2
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variable ui.  Show that  
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and then use the same expression on the first and third terms to show that 
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Obviously Clark’s model is 2nd-order accurate in filter width. 
 
TASK11: Mixed Models 
 
It was observed that for most complex flows use of a scale-similarity model alone does 
not produce enough dissipation and the code becomes unstable.  In practice scale 
similarity models are supplemented by a dissipative (Smagorinsky like) SGS model.   
There are several ways of doing that.  Two examples are provided below, the so-called 
one coefficient model and the two-coefficient mixed models (Zang et al.,  Vreeman et al., 
Liu et al., etc). 
 
a) ikdkikiik SSCuuuu 22 ∆−−=τ          (40) 
or more generally  
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b) ikdkikissik SSCuuuuC 22)( ∆−−=τ        (42) 
 
or more generally  
 

ikdikssik CAC ατ 2−=          (43) 
 
Exactly as in the case of the determination of the Cd constant in the classical dynamic 
Smagorinsky model, minimize the error to obtain the following expressions for these 
constants in cases a) and b) 
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where >=< ikikEF FEP  and <>  denotes average over the homogeneous directions. 
 
Hint:  A basic introduction to the idea of dynamic modeling.  Consider an arbitrary 
nonlinear term t(u), which is known function of the field variables, u, and suppose we 
wish to determine its filtered value by modeling the subgrid residual with an algebraic 
model m(u), which depends on the field variables but, in general, can also depend 
explicitly on space and time and on other parameters such as the filter width ∆.   The 
value of the filtered term is then the sum of the filtered and modeled parts: 
 

)()()( umutut +=                      (47)                          
 
The basic idea behind the basic procedure is to consider how t(u) and m(u) vary with the 
filter width.  In particular, an expression similar to the previous one for the value of the 
filtered term at a larger filter width, referred as test filter, can be written as: 
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If relation (47) is test filtered and subtracted from (48) we get: 
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Remarkably, all the terms in this equation are computable from the resolved field.  It 
represents the ‘band-pass filtered’ contribution to the nonlinear term in the scale range 
between the grid and the test filter levels.  A consistent SGS model should contribute the 
same amount as the resolved field in this band.  The key to the dynamic procedure is to 
use this identity as a constraint for calibration of SGS models.  Note that while (49) is an 
exact identity when m(u) is the exact subgrid residual, it should only expected to hold in 
a statistical sense when m(u) is modeled.   
 
Returning to our problem, choose t=uiuk and m(u ) a model for the stress ikτ .  Remember 

also that by definition the subtest stress Tik is just ikτ  with 
_
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jikiik uuuuT −= ).  The test filter width is taken normally larger than the width of the 
test filter).  So from (49) we get: 
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where, for instance, in case (a)  ikdikik CBT β2−=   To be more specific, in our case 

kikiik uuuuB ~~~~ −=  and ikik SS
~~~2∆=β .  The other important observation is that the left 

hand side of (50) is just the resolved stress denoted Lik.  Upon introduction of the 
proposed expressions for Tik and ikτ  (50) can be satisfied only approximately.  Also (50) 
contains in fact a system of 6 independent equations that have to be used to determine 
only one or two constants.  A least-square procedure can be determined to minimize the 
error in (50).  For instance, in case (a) 
 

ikdikikikikdikikikikikikik MCNLCABLTLe 2)ˆ(2)ˆ(
~~~

+−=−+−−=+−= αβτ  (51) 
 
where to simplify the calculation we used  
 

ikikik ABN ˆ−=   

ikikikM αβ −=          (52) 
 
So all what you have to do is to minimize ikikeeE =2 .  Typically, the final expression is 
averaged (44-46) over the homogeneous directions in the flow (if they exists) to improve 
the robustness of the predictions (the coefficient Cd should be positive for stability 
reasons, something that is not guaranteed by the dynamic procedure). 
 
TASK12: A priori evaluation of sub-grid and sub-filter stress models. 
 
In a priori tests data from DNS are filtered and compared to the model.  A priori tests 
indicate the degree of correlation between the modeled and exact SGS/SFS model and are 
useful indications of the expected performance of the model in actual LES computations 
(a posteriori tests).  Though a high correlation (close to one) with the exact value is not a 
sufficient condition for a good SGS/SFS model, it is a desirable feature.  A posteriori 
tests are necessary to obtain complete information on the model performance and, in 
particular, on the level of energy dissipation introduced by the model (most SFS models 
do not introduce enough dissipation to keep the simulations stable if not supplemented by 
a dissipative (generally, Smagorinsky type) model as discussed in TASK 11). 
 
Choose one data sample (file) for DNS.  Remember that 4∆DNS=∆LES in the x and z 
directions, while the mesh is identical in the nonhomogeneous direction.  The filters are 
thus going to be applied ONLY in the homogeneous directions.  There are several ways 
to do the data transformation and the filtering.  Here we are going to adopt a simplified 
procedure.  Sample the DNS data on the scale of the LES grid, and filter it using a 
discrete top-hat filter of width 2∆LES to obtain the LES field iu .  The expression for that 
filter using trapezoidal rule is: 
 

11 4/14/24/1 +− ++= iiii φφφφ        (53) 



 
Make sure you are using the periodicity of the data near boundaries. 
 
Since the DNS data represent the exact velocity field, the exact SFS stress can be 
computed at each point on the grid.  To do that you just have to estimate jijiij uuuu −=τ  
in the same way you obtained iu .  The modeled SFS stress can be computed from the 
LES field iu defined on the LES grid, and compared to the exact stress at the same points 
on the LES grid.  Remember that all quantities related to LES should be derived starting 
from iu , not from DNS, in other words one can use information residing only at the 
coarser mesh locations.  Use central differences to estimate the different LES velocity 
derivatives involved in the expressions of the SFS stress in Models 1 to 4 and in the 
Smagorinsky model.  Take into account that the grid spacing is different in the two 

directions, so for instance in Model 1 the term ki uu 2
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∂∆ .  In the SFS model expressions there are additional explicit 

filtering operations that have to be carried out on the LES fields.  Use the same top hat 
filter of size 2 ∆LES for these operations.   
 
Compute the modeled SFS stress xyττ =12  for Models 1 to 4 defined in Task 10, as well 

as for the dynamic Smagorinsky model ijLESik SSC 22 ∆=τ with 2
LESC∆  determined 

from file='C_NIU_MEAN.dat'.   
 
Plot the distribution of the instantaneous stress 12τ  (exact+estimated using the different 
models considered) in an (x,z) plane at around 20 wall units from the wall.  Then, 
average the results in the (x,z) directions and plot the averaged exact SFS stress vs. the 
one predicted by each of the four models.  Ideally, the data should be close to the line at 
450.  Compute the correlation coefficient )( +yρ and the ratio r(y+) of the rms values of 
the exact and predicted stress 12τ .   
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where M refers to model value, E to exact value, and <> represents average in the (x,z) 
directions.  The correlation coefficient measures the degree of linearity in the relationship 
between the modeled and the exact SFS stress, while the ratio gives information about the 
coefficient of proportionality.   Comment on the results.  Repeat the same exercise for the 
SFS/SGS dissipation ijijSτε = . 
 
Why do you think the SGS dynamic Smagorinsky model does poorer than the SFS 
models?   



 
Comments:  
You could obtain the LES field iu by filtering the DNS data on the DNS grid with a filter 
of size 2∆LES =8 ∆DNS.  However, the explicit filtering in the LES Models should be done 
with the discrete top-hat filter of width 2∆LES.  You can use a discrete top-hat filter 
(derive its expression), or you can use a discrete Gaussian filter (make sure that the 
coefficients of the discrete approximation add exactly to one).  Deduce an expression for 
such a Gaussian filter knowing that the coefficients are practically zero for distances 
larger than 3 times the width of the filter.  For extra points you can use the discrete 
Gaussian filter in the above analysis.  Do you see any important differences? 
The most correct way of doing this operation is to go to wave space using Fast Fourier 
Transform (FFT) in the periodical directions, apply the Gaussian filter in wave space, 
then a sharp cut-off filter to eliminate all frequencies larger than the LES grid size    

∆=>=∆− /0),'( πckkforxxG  and, finally, go back to physical space.  You can 
try to do this for additional extra points.   
 
TASK13: Estimate the performance of the dynamic Smagorinsky SGS model used in the 
LES based on the DNS results on a finer mesh (this is part of an a posteriori analysis).   
 
The analysis is similar to what was required for the Smagorinsky model in Task12, but 
here the filter width should be the grid size in the LES grid (∆LES).  The test filter used in 
the LES calculation was a discrete top-hat filter derived using Simpson’s rule: 
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Calculate using only the velocity data from the LES simulation the dynamic constant  
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where in our case the filter width ratio is 2.  Compare the obtained distribution of 2∆C (y)  
with the one given in the file 'C_NIU_MEAN.dat'.  Calculate the distribution of the total 
(resolved + modeled) shear stress xyτ .  Use the filtered DNS data to predict the ‘correct’ 
distribution of xyτ .  Comment on the results.  You can do a similar analysis for some of 
the other statistics.  Is the agreement between LES and the statistics obtained using the 
filtered DNS data on the LES grid better?  In any case this is a much fair comparison to 
make when one SGS/SFS model is evaluated.   
 
TASK14:  Well resolved DNS compared to our DNS. 
 



Compare your statistics with those obtained by Kasagi et al at the same and/or similar 
Reynolds number on finer meshes.  The statistics are available at http://www.thtlab.t.u-
tokyo.ac.jp/  . 
 


