
058:268 Turbulent Flows 2004 
G. Constantinescu 
 
HOMEWORKS:   
 
Assignment I  - 01/26/04, Due 02/04/04 
 
1)  A cubical box of volume L3 is filled with fluid in turbulent motion.  No source of 
energy is present, so that the turbulence decays.  Because the turbulence is confined to 
the box, its length scale may be assumed to be equal to L at all times.  Derive an 
expression for the decay of the kinetic energy 3u2/2 as a function of time.  As the 
turbulence decays, its Reynolds number decreases. If Re=uL/ν becomes smaller than 10 
say, the inviscid estimate Lu /3=ε  should be replaced by an estimate of the type 

Luc /2νε = , because the weak eddies remaining at low Reynolds number lose their 
energy directly to viscous dissipation.  Compute the coefficient c required for the 
dissipation rate to be continuous at Re=10.  Derive an expression for the decay of the 
kinetic energy when Re<10 (this is called the final period of decay).  If L=1m, ν=15*10-6 
m2/s and u=1m/s at time t=0, how long does it take before the turbulence enters the final 
period of decay?  Assume that the effects of the walls of the box on the decay of the 
turbulence may be ignored.   
 
2)  For a two-dimensional steady turbulent flow in Cartesian coordinates (x,y), with mean 
velocity components (U,V), write 
 

(a) the continuity and momentum equations; 
 
(b) the mean internal energy equation; 
 
(c) the mean vorticity equation; 
 
(d) the turbulent kinetic energy equation; 

 
Simplify these for fully-developed flow between two parallel plates, a distance 2h apart, under 
the influence of a piezometric pressure gradient dp/dx.  Consider the boundary conditions that 
apply in this case. 
 
3)  TASK 1 
 
 
 
 
 
 
 
 
 



 
Assignment II  - 02/04/04, Due 02/16/04 
 
1)  Derive the vorticity equation 2.11 from the Navier Stokes equations.  Hence derive 
the mean vorticity equation (2.28).  With this expressed in Cartesian coordinates, discuss 
the connection between the Reynolds stresses and secondary flow in steady-fully 
developed flow in a straight duct. 
Reference: Su and Friedrich (1994), ASME j. Fluids Engrg., 116, pp. 677-684.   
 
2)  Derive the Poisson equation for the Reynolds averaged pressure field 

Show that -
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3) Denote the average of a quantity by <>.  Let ),( txφ be a conserved scalar quantity that 
satisfies the conservation equation: 
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It is very easy to show that the Reynolds averaged equation for this scalar is given by 
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a) Show that the transport equation for the scalar variance is 
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b) Identify the production term, the dissipation term, the turbulent scalar flux term 

and the viscous transport term 
c) Introduce the gradient diffusion model ><∇Γ−>=< φφ tu 'r  into the scalar 

variance equation 
 

d) Assuming there is a balance between production and dissipation in the scalar 
variance equation, and the eddy diffusivity is known, provide a model for the 
scalar dissipation rate φε  (which is one of the terms in the equation for the scalar 
variance) 

 
e) In the k-ε  model, transport equations are solved for k and ε , so that these are 

known quantities.  Assuming the time scale of the turbulence decay k/ε  is equal 
to the time scale of the scalar variance decay defined analogously, and using the 
model for φε , provide a model for the scalar variance. 



 
4. Derive the equation for the fluctuating velocity: 
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and then the Reynolds stress transport equation: 
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starting from the momentum & continuity equations for the total velocity: 
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Symbolically the steps are  
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(you are basically taken the first moment of the momentum equation) 
How many independent equations and how many unknowns are there? Why not also 
form the moment of the continuity equation? 

 
5.  Using the N-S equations: 

 

jijiiikkit uuUPUUU ∂−∇+∂−=∂+∂ 2)/1()( νρ  
 

show that the rate at which the mean energy (per unit mass) 1/2 iiUU is lost to turbulence 

is PRODUuu jiij −=∂ +viscous_contribution.  Hint: Terms that are conservative (can be 
written as divergence of a function) are just redistributing energy, so they are not an 
‘energy loss’.  What this exercise demonstrates is that the term ‘production’ is actually 
referring to the transfer of energy from the mean flow to the turulence, and not to a net 
source of energy.   

 
6. Anisotropy equation:  The Reynolds stress anisotropy tensor is defined as 

ijjiij kuub δ3/2/ −= .  Using the fact that the equation for the tke in homogeneous 
turbulence is ε−=∂ Pkt (P is the production term) the equations for the turbulent 

stresses ijijijjit Puu εφ −+−=∂  where ijφ  is the pressure velocity correlation (or 
redistribution) term, derive the following equation  for ijb : 
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where P/k= ikki Ub ∂− .  For the other definitions please see pag 52-57 in Durbin’s book. 
 



 
Assignment III  - 02/16/04, Due 02/23/04 
 
 
1. Find the probability distribution function, P(u), and the probability density function, β(u), for 

the following periodic functions with period T = 2: 
 
 (a)  The triangle wave: u(t) = t 0 < t < 1 
    u(t) = 2 - t 1 < t < 2 
 (b)  The sine wave: u(t) = sin πt (with T = 2) 
 
2. Analysis of an ensemble of experimental data for a random variable u(t) reveals that a good 

approximation for its probability density β(u) is 
 
 [ ]{ })20(628.0cos11.0)( −+= uuβ    15<u<25 

 
 (a)  Plot this function 
 (b)  Calculate the mean and standard deviation for u 
 (c)  Determine the Gaussian probability distribution for a variable with the same first and 
  second moments as in (b) above.  Plot the Gaussian probability density on the 
  same plot as (a), and comment on the comparison. 
 
3. Determine the autocorrelation function ρ(τ) for the periodic signal u(t) = sin ωt using the 

time average.  Repeat for u(t) = cos ωt, and comment on the results. 
 
4. Show that, for a stationary random function u(t), with autocorrelation coefficient ρ(τ), 
 

 (a) 
u(t) dt 

a 

b 2 

 = 2  u 2   ρ ( τ ) b - a - τ 
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 dτ 

 
 

 (b) 

du(t) 
dt

2 
 = -  u 2   

d 2 ρ ( τ ) 

d τ 2 
τ  = 0  

 
5. What is the Fourier transform of the delta function, δ(t)? 
 



6. In a spray, the probability density function of droplet diameter D is uniform in the range 
50<D<100 µm and zero otherwise.  Determine the probabilty density function β(D) and the 
Sauter mean diameter, defined as 23 / DD . 

 
7. Consider a round oil jet injected into still water.  The two fuids are perfectly immiscible (i.e., 

they do not mix at the molecular level but can be broken down into small oil drops in water, 
and vice versa, much like salad oil).  The oil has a density of 600 kg/m3 and the density of 
water is 1000 kg/m3.  Let f represent the mass fraction of oil at any location. 

 
 (a)  Find an expression for the probability density function b(f) as a function of f  (hint: 

since the two fluids do not mix, b(f) comprises two delta functions). 

 (b)  Calculate the mean density ρ  as a function of f .  Recall that ∫=
1

0
)()( dfff βρρ  

 
8.  Most computer libraries have a random number algorithm generator that generates 
values between 0 and 1 with equal probability i.e. P(u~ )=1  for 0<u~ <1.  Show that the 

mean u~ =1/2 and that 12/12 =u , where u is the fluctuation u=u~ -u~ .  Deduce that 

)2/1~(12 −= uξ  has 0=ξ  and 12 =ξ  (you have to proof that analytically first).  A 
Gaussian random variable can be approximated by summing N values iξ and normalizing 

by N .  E.g., for N=16, ∑=
16

1
4/1 iG ξξ .  Program this and verify by averaging a large 

number (10,000 say) of values that 0=Gξ and 12 =Gξ . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Assignment IV  - 02/23/04, Due 03/03/04 
 
1. Show that, in isotropic turbulence,  
 
 (a)  0'' =ivp   

 

 (b)  
22

2
1

⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

=⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

x
v

x
u , etc.    

 
2.    For homogeneous isotropic turbulence the two point correlation  

>+=<+ ),(),(),( txutrxutrxR jiij
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3. Assuming that the turbulence is isotropic, estimate the value of the microscale λ 

corresponding to a decrease in rms turbulence intensity in a body of water from 1 to 0.5 m/s 
in a time of 20 seconds. 

 
4. The rms diameter of a cloud of marked particles in a field of isotropic turbulence is found to 

grow initially at a rate of 0.03 m/s.  If the Lagrangian time scale is 10 s, what will be the rms 
diameter of the cloud at t = 60 s? 

 
5.  For homogeneous turbulence, show that the equation for the turbulent kinetic energy 
reduces to 
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Recall that in homogeneous turbulence fluctuations are not a functions of space while 
the mean velocity gradient in each direction can assume a constant non-zero value.  
From the definition of ε show exactly what terms are not equal to zero.  For 
homogeneous isotropic turbulence, show that the equation for the turbulence kinetic 
energy reduces to  
 

ε−=
∂
∂

t
k  

Recall that in isotropic homogeneous turbulence the mean flow field is shear free. 



 
 

 
Assignment V  - 03/03/04, Due 03/08/04 
 
 

1. Consider the turbulent mixing layer between two streams of velocity U1and U2.  

Show that the layer thickness grows linearly with distance from the origin.  Describe 

how you would determine the velocity distribution across the mixing layer. 

2. Investigate a similarity solution for the axisymmetric wake, in laminar and turbulent 

flow, to determine the growth and decay laws, and the velocity profiles.  In the 

turbulent case, assume a constant eddy viscosity across the wake.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Assignment VI  - 03/03/04, Due 03/08/04 
 

1)  Consider vertical axisymmetric flow, e.g., a thermal plume from a point heat source, or a 
boundary layer outside a vertical cylinder.  With buoyancy present, the equations of motion 
(under thin shear-layer approximations) in laminar flow may be written 
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where t is temperature, ∞t  is the ambient temperature, β is the coefficient of thermal expansion, 

and α is the thermal diffusivity. 

 (i)  Investigate similarity solutions for a laminar axisymmetric thermal plume to 
determine its growth and decay laws.  To do this, you need to consider the integral constraints, 
introduce appropriate velocity and length scales, and seek conditions which would yield 
similarity solutions.  You will find that it is useful to introduce a stream function, and define a 
dimensionless temperature difference: q = (t - ∞t )/(to - ∞t ), where to is the temperature at the 

plume axis.  Obtain the ordinary differential equations that govern the velocity and temperature 
profiles (do not solve unless you want to make a project out of it). 

 (ii)  Next consider turbulent flow.  A two-dimensional turbulent plume is discussed in 
Tennekes and Lumley, sec. 4.6, pp. 135-144.  Develop the equations for the axisymmetric 
turbulent plume.  Then investigate similarity solutions to determine the growth and decay laws.  
Again, obtain the ordinary differential equations that govern the velocity and temperature 
profiles using either eddy-viscosity or mixing-length hypothesis. 

 
 

2)  The momentum equation for the temporally evolving turbulent mixing layer is given 
by 
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a) Introduce the gradient transport model, assuming constant eddy viscosity 
b) Show that by introducing the similarity coordinate 
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where lhs UUU −=  and Ul and Uh are the velocity at ∞⎯→⎯y  and −∞⎯→⎯y , the 
momentum equation can be written as 
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c) Show that <U> is given by 
 

cs UerfUU +>=< )(
2
1)( ηη  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



   
Assignment VII  - Due 03/22/04 
 
TASKS 2,3,4,5. 
 
Assignment VIII  - Due 04/05/04 
 
TASKS 6,7. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Assignment IX  - 03/08/04, Due 04/21/04 
 
     
1.  The velocity distribution in turbulent flow in a pipe of radius a may be approximated 
by a power-law 
 

   
where y is measured from the wall.  The power depends on the Reynolds number. The 
momentum equation shows that the pressure varies linearly along the pipe, and the total 
stress (molecular plus turbulent) varies linearly across the pipe.  Use this information to 
find an expression for the distribution of the mixing length across the pipe.  Plot this in an 
appropriate non-dimensional form for m = 7.  
 

2.  An experiment is performed on fully turbulent channel flow at 5102Re ==
ν
δU  The 

fluid is water ( sm /10*14.1 6−=ν ) and the channel half size .2cm=δ   The skin friction 
coefficient is found to be 310*4.4 −=fC .  Determine: δδττ /Re,/, vandUuU where 

τνδ uv /= is the viscous lengthscale.  What are the thicknesses of the viscous wall region 
(y+<50) and of the viscous sublayer, both as fractions of δ and in millimeters? 
 
3.  Carry out a series expansion of the instantaneous velocity components to determine 
the behavior of the Reynolds stress components, turbulent kinetic energy, and dissipation 
rate near a free surface (zero stress boundary).  Comment on the differences between this 
and a solid wall. 

4.  Simplify the k-ε, k-τ and k-ω models for the logarithmic layer (neglect convection, 
diffusion, and viscous terms).  Determine the value of the Karman constant, κ, implied by 
these models and compare with the experimental value of 0.418.  Hint: for all models, 
assume a solution of the form: 
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5. Beginning with the k-ω model of Wilcox and σ* = σ, make the formal change of 

variables ε = β∗ωk and derive the implied k-ε model.  Express your final results in 
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standard k-ε model notation and determine the implied values of the closure coefficients 

Cµ , Cε1, Cε2, σk and σε in terms of α, β, β∗, σ and σ∗. 

 

6.  Show that the expansion for the Reynolds shear stress at the wall can be written as: 
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where the nondimensional coefficient σ may be assumed to be independent of the 

Reynolds number.  For the flow between two walls (fully developed channel flow) 

show using the momentum equations (remember that one can show that the total 

stress varies linearly across the channel) that in wall coordinates the expansion for the 

streamwise velocity is: 
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7.  Mixing length model with Van Driest damping:  In a wall boundary layer, the log-law 

applies in the region 35<y+<0.2 +
99δ  ( +

99δ  is the thickness of the b.l. in wall units).  To 

extend the mixing length model all the way to y=0, Van Driest suggested that yκ should 

be multiplied by an ‘exponential damping function’.  Thus the turbulence length scale 

near the wall becomes )1( / ++−−= Ay
m eyl κ  , where the Von Karman constant is 0.41.  

Apply this to the constant total stress layer, 2
τν uUuv y =∂+− to find a formula for Uy∂ .  

Integrate this numerically and make a log-linear plot of U+ vs. y+.  What is the additive 

constant B that you obtain from the log law if A+=26?  What value of  A+ gives B=5.5? 



      Hint:  The formula you have to obtain is 2
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8.  A shortcoming of the k-ε model:  Show that in incompressible flow the eddy viscosity 

formula ijijtji kSuu δν 3/22 −=−  gives the same rate of turbulent energy production as 

ijijt SSP ν2=  irrespective of the mean rate of rotation tensor )(
2
1

ijjiij UU ∂−∂=Ω .  

When turbulence is rotated (e.g., the case of the flow in turbomachinery) the centrifugal 

acceleration can affect the turbulent energy.   Discuss whether the classical k-ε model can 

predict such effects.  There is an analogy between rotation and streamline curvature, so 

your conclusion should apply to effects of curvature on the turbulence, too.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Assignment X  - Due 04/28/04 

 

TASKS 8,9,10,11 

 

Assignment XI  - Due 05/05/04 

 

TASKS 12,13 

 

 
 


